Panduan Acara X Makalah Simposium
\qquad

FAKULTAS KEDOKTERAN

KONGRES NASIONAL (KONAS) XI
 DAN
 PERTEMUAN ILMIAH NASIONAL (PIN) PERHIMPUNAN AHLI ANATOMI INDONESIA (PAAI)

29-30 Juli 2005
di Fakultas Kedokteran
Universitas Gadjah Mada
Yogyakarta

Daftar Isi

Laporan Ketua Panitia 3
Sambutan Dekan FAkultas Kedokteran UGM 6
Sambutan Ketua PB PAAI 9
Susunán Panitia 11
Jadwal Konas IX dan PIN PAAI 2005 13
KEYNOTESPEECH
Pembelajaran Anatomi di Masa Depan (Teuku Jacob) 20
NEUROSAINS
Konsep Baru dalam Regenerasi Jaringan Otak (Subowo) 27
Neurologi Memori: Misteri yang Belum Terungkap (Soedjono Aswin) 48
Neurologi dan Gangguan Memori: Ditinjau dari Aspek Bedah Saraf (P. Sudiharto) 50
PENDIDIKAN
Ilmu Anatomi dalam Kurikulum Pendidikan Kedokteran Hewan Berbasis Kompetensi (Heru Setijanto) 54
Membangun Pemahaman Dasar Anatomi Ketika Melaksanakan Pembelajaran (Sutiman B. Sumitro) 67
Menggagas Pembelajaran Anatomi pada Kurikulum Bernasis Kompetensi untuk Pendidikan Kedokteran Dasar (Djoko Prakosa) 71
OBESTTAS
Sinyal dari Sel Lemak (Rina Susilowati) 74
Hubungan Obesitas dan Sindroma Metabolik: Faktor Resiko atau Akibat (Ahmad H. Asdie) 90
Peran Kinesiolcgi dalam Prevensi dan Manajemen Obesitas (Rio Sofwanhadi) 109
Ucapan Terima Kasih 127

Sinyal dari Sel Lemak

Rina Susilowati
Bagian Histologi dan Biologi Sel Fakultas Kedokteran
Universitas Gadjah Mada Yogyakarta 55281

Abstract

Abstrak Sel lemak (adiposit) merupakan sel yang dikenal memiliki fungsi sebagai tempat penyimpanan kelebihan energi dalam bentuk triasilgliserol dan mensekresikannya dalam bentuk asam lemak bebas ketika tubuh membutuhkan. Beberapa hormon seperti insulin dan katekolamin mengatur penyimpanan dan penggunaan energi dalam sel lemak tersebut. Adiposit juga telah dikenal sebagai sel yang berperan penting dalam regulasi homeostasis energi dengan mensekresikan sinyal yang berperan dalam komunikasi endokrin, parakrin dan autokrin. Faktor yang disekresikan adiposit termasuk enzim (lipoprotein lipase (LPL) dan adipsin), factor pertumbuhan (vascular endothelial growth factor (VEGF)), sitokin (tumor necrosis factor-alpha, interleukin 6) dan beberapa hormon yang berperan pada metabolisme glukosa dan asam lemak (leptin, adiponectin, resistin and acylation stimulation protein (ASP)). Walaupun masih banyak fungsi molekul sinyal dari adiposit ini yang masih belum banyak diketahui namun mereka telah terbukti berperan dalam berbagai fungsi tubuh seperti regulasi homeostasis energi, pertahanan tubuh dan reproduksi, diferensiasi sel otot, pengontrolan nafsu makan, sekresi gonadotropin, sekresi dan sensitivitas terhadap insulin. Berbagai adipokin dapat memiliki efek antagonistik satu sama lain. Resistin dan TNF-? memicu resistensi insulin sedangkan leptin dan adiponectin memperbaiki keadaan resistensi insulin. Konsentrasi leptin dan TNF-? pada sirkulasi berkorelasi lurus dengan banyaknya lemak tubuh sebaliknya adiponectin menurun pada keadaan obesitas. Pengetahuan akan proses proliferasi, diferensiasi adiposit maupun adipokin dan jalur transduksi sinyal yang mengontrol produksinya merupakan molekul target pada penanganan obesitas, hiperlipidemia dan resistensi insulin.

Kata kunci: jaringan lemak - adiposit - adipokin - obesitas

Pendahuluan

Pada tubuh kita terjadi proses untuk menjaga homeostasis energi. Otak mengintegrasikan informasi yang didapatkan melalui serabut saraf dan hormon dari organ perifer. Pengolahan informasi pada sistem saraf pusat akan digunakan untuk melakukan koordinasi respon individu berupa perubahan perilaku dan metabolisme. Gangguan proses homeostasis energi ini dapat menimbulkan obesitas yang terjadi karena akumulasi energi yang berlebihan dalam bentuk jaringan lemak. Timbunan lemak yang berlebihan ini akan memicu timbulnya berbagai penyakit seperti diabetes, arthritis dan penyakit kardiovaskuler, khususnya pada timbunan lemak intraabdominal.

Pada kebanyakan mamalia dapat ditemukan dua macam jaringan lemak yaitu putih (white adipose tissue / WAT) dan coklat (brown adipose tissue / BAT). Keduanya dapat menyimpan energi dalam bentuk triasilgliserol dan menghidrolisanya menjadi asam lemak bebas dan gliserol. Bila dibutuhkan sebagai sumber energi oleh tubuh asam lemak bebas akan disekresikan oleh WAT sedangkan BAT akan menggunakannya untuk memproduksi panas. Aktivitas termogenik BAT dapat dipicu dengan adanya hiperfagia dan suhu lingkungan yang dingin. Obesitas merupakan keadaan yang diakibatkan oleh kelebihan WAT.

Proliferasi dan diferensiasi adiposit

Adiposit berasal dari sel mesensimal yang berdiferensiasi menjadi sel lemak. Ciri penting jaringan lemak adalah plastisitasnya dalam hal volume dan jumlah sel serta adanya kemungkinan berganti fenotipe antara adiposit putih dan coklat. Konversi adiposit putih ke coklat merupakan salah satu cara perubahan keseimbangan energi. Peroxisome proliferator-activated receptor gamma (PPAR?) dan koaktivatornya PGC-1? dan SRC-1, mempengaruhi metabolisme dan diferensiasi adiposit. Ekspresi ektopik PGC-1? telah diperlihatkan dapat menginduksi ekspresi adiposit coklat pada WAT (Tyraby dan Langin, 2003).

Ketika dewasa peningkatan massa adiposit tidak hanya diakibatkan oleh peningkatan ukuran namun juga oleh proliferasi adiposit. Selain faktor dari luar beberapa faktor yang mempengaruhi berasal dari sel preadiposit sendiri (MacDougald \& Mandroup, 2002). Beberapa faktor seperti insulin-like growth factor I, macrophage colony-stimulating factor, asam lemak, prostaglandin dan glukokorticoid menginduksi proliferasi adiposit. Sedangkan faktor penghambatnya adalah Wht, transforming growth factor ?, sitokin proinflamatorik dan prostaglan$\operatorname{din} F(2$?) (Tyraby dan Langin, 2003).

Distribusi jaringan lemak terlihat lebih penting dari pada jumlah total jaringan lemak. Jaringan lemak visceral lebih berhubungan dengan resistensi insulin, diabetes tipe 2, hipertensi dan penyakit kardiovaskular. Kegagalan untuk mendapatkan kecukupan massa jaringan lemak (lipodistrofi) juga dapat menyebabkan resistensi insulin dan diabetes. Hal ini dimungkinkan karena timbulnya penyimpanan lemak pada hepar, otot skelet dan sel beta pankreas. Sebagian besar penderita obesitas juga menyimpan lemak pada sel otot skelet dan hati dan juga sel beta. Tingkat infiltrasi lemak ektopik tersebut berhubungan dengan resistensi insulin (Heilbronn et al., 2004). Peningkatan ukuran sel lemak merepresentasikan kegagalan peningkatan massa adiposit dan mengakomodasi peningkatan penyimpanan energi (Ravussin and Smith, 2002).

Homeostasis seluler dan sekresi dari adiposit berkurang pada adiposit yang berukuran besar dibandingkan dengan yang berukuran kecil. WAT dan BAT juga berbeda secara morfologi. Dengan mikroskop cahaya adiposit coklat memiliki lipid sitoplasma dalam bentuk droplet berukuran kecil dan banyak (multilocular.) sedangkan pada adiposit putih vesikel lemak merupakan satu vacuola tersendiri (unilocular). Secara ultrastruktural adiposit coklat memiliki banyak mitokondria dan mengekspresikan uncoupling protein 1 (UCP1) yang berperan pada produksi panas. Beberapa sel adiposit coklat ditemukan pada area WAT dan jumlahnya bervariasi. Termogenesis pada BAT adalah upaya untuk mengeluarkan energi namun pada manusia BAT sangat jarang dijumpai dan mungkin tidak fungsional. WAT diketahui memiliki sel
prekursor mesensimal yang apabila distimulasi akan berdiferensiasi menjadi adiposit coklat yang dapat meningkatkan pengeluaran energi dalam bentuk panas (Cinti, 2001).

Abstract

Adipokin Adipositokin atau adipokin merupakan istilah yang dipakai untuk merujuk molekul yang disekresikan oleh adiposit yang berpengaruh pada fungsi dan integritas struktural jaringan lain. Adipokin merupakan polipeptida atau faktor non-protein yang secara metabolik aktif sebagai molekul yang berperan dalam berbagai fungsi seperti imunitas (komplemen), endokrin (leptin, hormon pertumbuhan), fungsi metabolik (asam lemak, adiponectin, resistin) dan fungsi kardiovaskuler (angiotensinogen, PAI-1). TNF-?, leptin, PAI-1, IL-6 angiotensinogen, resistin dikenal sebagai faktor proinflamasi yang dapat menyebabkan atherosclerosis dan meningkat kadarnya dalam darah pada keadaan obesitas. Jaringan lemak visceral lebih banyak mensekresikan faktorfaktor tersebut dari pada jaringan lemak subcutan sedangkan penurunan massa lemak akan diikuti dengan penurunan faktor-faktor tersebut. Beberapa adipokin juga berperan dalam mempengaruhi aksi insulin. TNF-? menghambat fosforilasi reseptor insulin yang menghambat transduksi sinyal dari insulin yang pada akhirnya akan mengakibatkan resistensi insulin dan terhambatnya transpor glukosa. Pemberian resistin juga menurunkan transpor glukosa ke dalam sel yang diperantarai oleh insulin. Adiponectin serum menurun pada obesitas dan meningkat ketika terjadi penurunan berat badan. Beberapa adipokin yang telah dikenal dapat dilihat pada tabel 1 .

Tabel 1. Beberapa adipokin dan fungsinya

No.	Nama	Efek
1	Leptin	sinyal ke otak, regulasi nadsu makan dan pengeluaran energi
2	Agouti	antagonis reseptor melanocortin
3	Adipophilin	marker spesifik akumuasi lipid
4	Adiponectin/Adipop/adipose most abundant gene transcript 1 (apM1)/adipogte complement-related protein (AGD)	behubungan dengan resistersi insulin
5	Resistin	menurunkan sensitivitas terhadap insulin
6	Visfatin	berikatan dengan reseptor insulin
7	Tumor nearosis factor (TNF-?)	menyebabkan timbulrya resistensi insulin pada doesitas
8	Intereukin-6 (IL-6)	pertahanan tubuh dan metabolisme glukosa dan lipid
9	Plasminogen adivator inhibitor-1(PAI-1)	inhibitor sistem fibrinditik
10	Angictensinogen	prekursor angictensin II, regulator tekanan darah dan homeostasis elektroit, meningkatkan ukuran adiposit sesuai dengan peningkatan umu
11	Adipsin	penghubung jalur aktivas komplemen dan metabolisme jaringan lemak
12	Acylation-stimulating protein (ASP)	mentpengaruhi sintesis triaciglycerd
13	Macrophage inhibitory fator (MIF)	berhubungan dalam proses proinflamasi dan imuncregulasi
14	Prostaglandins I2 and 2 (PGI2 and PGE ${ }_{2}$)	berhubungan dengan fungsi reguiasi inflamasi dan perijendalan darah
15	Transforming growth factor? (TGF?)	regulas berbagai respon bidogis termasuk proliferasi, diferensiasi dan perkentangan
16	Insulin-like growth factor I (IG-I)	stimulasi proliferasi berbagai sel dan merupakan perantara efek berbagai hormon pertumbuhan
17	Vasalar endothelial growth fador (VEGF)	Faktor pertumbuhan
18	Lipoprotein lipase	Protein yang berperan dalam metabolisme lipid
19	Cholesterd ester transer protein (CEIP)	Protein yang berperan dalam metabolisme lipid
20	Phospholipid transfer protein	Protein yang berperan dalam metabolisme lipid
21	Apoprotein E	Protein yang berperan dalam metabdisme lipid

Leptin

Leptin merupakan sinyal utama dari adiposit yang berperan penting pada proses pengontrolan berat badan (Jequier, 2002). Sinyal leptin diterima oleh reseptor pada hipotalamus sehingga konsekwensinya akan meningkatkan metabolisme basal, menghambat nafsu makan dan memicu sekresi gonadotropin (Sahu, 2003). Hormon leptin diproduksi oleh adiposit bila lemak yang disimpan meningkat. Leptin dikeluarkan ke pembuluh darah dan diterima oleh reseptornya pada otak. Hal tersebut menyebabkan tubuh tahu bahwa telah cukup makan dan merasa kenyang. Selain oleh adiposit leptin juga diproduksi di lambung (Pico et al., 2003). Leptin yang diproduksi oleh sel lambung dapat berperan sebagai regulasi perilaku makan dengan mengirim informasi ke otak akan ketersediaan sumber energi eksternal dan berperan pada pusat kenyang dalam jangka pendek. Hal yang sama dilakukan oleh leptin dari adiposit namun untuk pengaturan jangka panjang. Orang yang mengalami obesitas memiliki kadar leptin yang tinggi pada darahnya sehingga kemungkinan ada molekul lain yang memiliki efek pada rasa kenyang dan memberi kontribusi pada regulasi berat badan tubuh.

Leptin merupakan produk dari gen ob merupakan proteohormon dengan berat molekul 16 kDa . Molekul leptin berdasarkan struktur tersier memiliki homologi dengan sitokin class I. Leptin baru ditemukan tahun 1994 walaupun adanya Obese Mouse telah dilaporkan pada tahun 1950 dengan ciri BMR lambat, peningkatan nafsu makan, infertilitas karena kekurangan sekresi gonadotropin. Nafsu makan dan kadar glukosa darah obese mouse dapat diturunkan dengan pemberian darah dari tikus normal. Molekul sinyal ini diproduksi secara spesifik oleh adiposit. Kadar leptin pada plasma berkorelasi dengan kadar leptin CSF dan indeks massa tubuh (body mass index). Pemberian leptin secara sentral telah diperlihatkan dapat mengurangi nafsu makan dan kegemukan pada mencit defisien leptin. Pemberian leptin di jaringan perifer juga menimbulkan pengaruh yang sama namun dengan dosis yang lebih besar (Pelleymounter et al., 1995).

Reseptor leptin merupakan reseptor yang tergabung dalam reseptor sitokin class I. Reseptor leptin terdapat di seluruh tubuh. Pada hypothalamus leptin menekan asupan makanan, menstimulasi pengeluaran
energi dan mempengaruhi beberapa aksis endokrin. Pada tikus yang dibuat kelaparan, pemberian leptin akan mencegah penurunan kadar LH, testosteron, tiroksin, dan peningkatan ACTH. Pada tikus betina yang dibuat kelaparan, leptin mencegah penundaan ovulasi. Tikus yang mengalami defisiensi leptin mengalami infertilitas dan keadaan tersebut dapat diperbaiki dengan pemberian leptin.

Mutasi pada reseptor leptin juga menimbulkan obesitas pada hewan coba. Reseptor leptin diekspresikan di berbagai organ. Ada beberapa macam reseptor leptin dengan ukuran mulai dari 34 aa hingga 303 aa yang memiliki domain ekstraselular yang identik (Tartaglia, 1997). Reseptor leptin yang pendek, diekspresikan pada plexus choroidus, mungkin berfungsi meregulasi transpor leptin melewati blood-brain barrier (Malik dan Young, 1996). Reseptor leptin yang panjang ada pada neuron yang memproduksi NPY pada hypothalamus. Pemberian leptin menyebabkan penghambatan produksi NPY sednagkan NPY adalah stimulan nafsu makan dan inhibisi efek system saraf simpatis. Leptin menekan ekspresi dan sekresi neuropeptide Y (NPY) pada nukleus arcuatus. Leptin merupakan antagonis NPY. NPY merupakan stimuator kuat terhadap nafsu makan dan berperan pada pengontrolan produksi berbagai hormon hipofisis seperti penekanan growth hormon, gonadotropin, dan stimulasi aksis hipofisis-adrenal.

Fungsi leptin pada reproduksi telah dikenal dengan pengamatan bahwa ob/ob mouse adalah steril. Pemberian leptin dapat mengoreksi keadaan tersebut dan juga dapat mempercepat onset pubertas (Chehab et al., 1996). Leptin juga berpengaruh pada GnRH neurons untuk mensekresikan gonadotropin. Leptin juga meningkatkan gonadotropin dan mungkin dapat digunakan sebagai cara menstimulasi reproduksi.

Variabel penting yang berpengaruh pada kadar leptin pada sirkulasi adalah massa lemak tubuh (body fat mass). Kadar leptin merefleksikan banyaknya jaringan lemak. Sintesis leptin dipengaruhi oleh beberapa hormone dengan stimulator kuat adalah insulin dan glukokortikoid. Growth hormon menstimulasi pada efek jangka pendek sedangkan pada jangka panjang justru menekan produksi leptin. Respon insulin terhadap asupan makanan merupakan mediator produksi leptin. Insulin meningkatkan produksi leptin secara tidak langsung melalui efeknya terhadap peningkatan penggunaan glukosa dan metabolisme oksidasi
glukosa pada adiposit. Sintesis leptin dihambat dengan stimulasi simpatis (Rayner dan Trayhurn, 2001).

Sebaliknya Leptin memiliki efek langsung pada sekresi insulin. Dilaporkan leptin menghambat transkripsi gen insulin dan sekresi insulin. Reseptor leptin bentuk panjang diekspresikan pada sel beta pankreas. Leptin dapat mengaktifkan ATP-dependent potassium channels atau interaksi dengan jalur PKA atau secara tidak langsung melalui aksi pada sistem saraf pusat. Leptin in vitro dapat menginduksi proliferasi sel Ca colon sehingga diperkirakan diet tinggi lemak dapat menginduksi terjadinya Ca colon dengan diperantarai peningkatan sekresi leptin (Liu et al., 2001).

Adiponectin - Adipocyte Complement-Related Protein -(complement-related protein 30 (ACRP30), adipose most abundant gene transcript (apM1), adipoQ).

Adiponectin (30 kDa) yang merupakan homolog terhadap protein komplemen Clq ini pertama kali dideskripsikan oleh Scherer tahun 1995. Hormon ini dapat ditemukan dalam bentuk monomer, trimer, hexamer dan multimer (Tsao et al., 2002). Bentuk tersebut akan berpengaruh pada aktivitas adiponectin. Monomer adiponectin meningkatkan oksidasi asam lemak pada otot sedangkan heksamer hingga multimer menghambat keluaran glukosa dari hepar (Berg et al., 2001). Multimer adiponectin juga telah dilaporkan mendegradasi IkB sehingga NFkB teraktifkan (Tsao et al., 2002). Sekresi adiponectin distimulasi oleh PPAR- γ. Produksi adiponectin distimulasi oleh agonis peroxisome proliferator-activated receptor- γ (thiazolidinedione/TZD) dan meningkatkan sensitivitas insulin. Pada obesitas terjadi penurunan konsentrasi adiponectin yang memicu peningkatan small dense LDL dan peningkatan kadar apoB dan triglicerida. Hal tersebut dapat menimbulkan atherosclerosis dan penyakit kardiovascular.

Reseptor adiponectin ada 2 yaitu AdipoR1 yang diekspresikan pada otot dan AdipoR2 yang diekspresikan pada hepar. Multimerisasi reseptor berhubungan dengan diabetes (Waki et al., 2003). Adiponectin juga berefek pada endotel pembuluh darah. Pada mencit dengan Adiponectin $\%$ terjadi peningkatan respon inflamasi pada luka vascular dan pemberian adiponectin dapat mencegah atherosclerosis pada tikus
dengan defisiensi apoE. Adiponectin berhubungan terbalik dengan kadar triglicerida dan berkorelasi positif dengan konsentrasi plasma HDL. Pemberian adiponectin meningkatkan aksi insulin pada hewan coba dan penurunan kadar adiponectin berkontribusi terhadap resistensi insulin yang dihubungkan dengan obesitas (Dietze-Schroeder et al., 2005). Ekspresi adiponectin dan kadar adiponectin pada sirkulasi sangat menurun pda pasien dengan DM tipe 2. Sensitivitas terhadap insulin berkorelasi positif dengan kadar adiponectin pada sirkulasi. Kadar adiponectin sirkulasi menurun pada keadaan obesitas pada saat terjadi resistensi insulin dan berkembang menjadi diabetes tipe 2.

Satu penelitian menyebutkan bahwa pemberian adiponectin mengurangi berat badan tanpa mengurangi asupan makanan pada tikus yang mengkonsumsi makanan tinggi lemak tinggi sukrosa (efek yang dikaitkan dengan peningkatan oksidasi lemak otot dan penurunan konsentrasi asam lemak pada sirkulasi). Adiponectin meningkatkan aksi insulin dengan efek langsung pada produksi glukosa hepar dab dengan mengurangi deposisi lemak ektopik pada hepar dan otot via peningkatan oksidasi lemak. Adiponectin menurun kadarnya pada obesitas dan dihubungkan dengan deposisi lemak dalam sel otot dan aksi insulin yang terganggu. Pemberian adiponectin mengurangi glukosa pada sirkulasi tanpa menstimulasi sekresi insulin. Adiponectin berefek langsung pada hepar karena adiponectin menurunkan produksi glukosa dan meningkatkan efek insulin dalammenurunkan produksi glukosa. Pemberian adiponetin mengurangi resistensi insulin dan meningkatkan toleransi glukosa.

Konsentrasi adiponectin menurun pada obesitas. Hubungan terbalik antara kadar adiponectin plasma dengan lemak visceral lebih kuat dari hubungannya dengan lemak subcutan. Seperti leptin adiponectin plasma lebih tinggi pada wanita. Kadar adiponectin meningkat setelah terjadi penurunan berat badan. Adiponectin terutama diproduksi oleh adiposit visceral. Adiposit visceral yang berukuran besar dengan penyimpanan trigliserida yang lebih besar memproduksi lebih sedikit adiponectin dari pada adiposit yang berukuran kecil. Karena adiposit berukuran besar kurang sensitive terhadap insulin.

Berbeda dengan leptin, TNF- ?, plasma activator inhibitor 1, ASP yang kadarnya dalam darah berkorelasi positif dengan adipositas tubuh,
kadar adiponectin menurun pada obesitas. Kadar adiponectin yang sangat rendah ditemukan pada pasien dengan diabetes yang resisten insulin karena mutasi dominan negatif yang menginaktifkan peroxisome proliferator-activated receptor-??. Thiazolidinedione (TZD) agonis peroxisome proliferator-activated receptor-?? meningkatkan kadar adiponectin dan kadar adiponectin berhubungan dengan perbaikan sensitivitas insulin selama pemberian TZD. Kemungkinan efek TZD dalam meningkatkan sensitivitas insulin dan memproteksi terhadap kardiovaskular dimediasi dengan peningkatan produksi adiponectin. Ekspresi adiponectin dihambat oleh TNF-??, interleukin-6, B-adrenergic agonis atau glucocorticoid. Adrenalektomi meningkatkan ekspresi adiponectin dan kadar adiponectin darah dan meningkatkan sensitifitas insulin pada ob/ob mice. Efek sitokin, katekolamin dan glukokortikoid dalam menginduksi resitensi insulin diperantarai oleh antara lain efeknya dalam menurunkan produksi adiponectin.

Insulin sendiri dilaporkan dapat menstimulasi atau menginhibisi ekspresi gen adiponectin pada kultur sel adiposit. Adiponectin plasma meningkat pada diabetes tipe 2 yang diterapi dengan sulfonilurea yang menstimulasi sekresi insulin. Ketika kadar leptin menurun drastis sebagai respon pengurangan asupan energi maka peningkatan adiponectin sewaktu restriksi energi pada manusia dengan sedikit perubahan saja pada lemak tubuh hanya berlangsung secara relatif sedikit dan tergantung pada jenis kelamin. Ketika lemak tubuh tidak dikurangi maka konsentrasi adiponectin kadar adiponectin tidak berubah.

Resistin

Resistin (94 asam amino) diproduksi pada WAT dan pada tingkat yang lebih rendah pada jaringan lemak coklat dan jaringan mammae tapi tidak pada jaringan lain. Kadar resistin meningkat pada obesitas dan diabetes. Pemberian TZD memicu ekspresi beberapa protein pada sel adiposit antara lain resistin (Steppan et al., 2001). Resistin telah dilaporkan menurunkan sensitivitas terhadap insulin selain menghambat diferensiasi myoblast dan adiposit (Kim et al., 2001). Resistensi insulin tersebut terjadi karena resistin menginduksi ekspresi suppressor of cytokine signaling 3 (SOCS-3), inhibitor sinyal insulin (Steppan, 2005).

Resistin juga telah dilaporkan memilikikemampuan proinfalamatorik dengan memicu ekspresi IL-6 dan TNF-?. Kemampuan ini didapat melalui jalur transduksi sinyal NF?B karena inhibitor NF?B dilaporkan menghambat inflamasi yang diinduksi oleh resistin (Bokarewa et al., 2005). Ekspresi resistin pada adiposit menurun ketika puasa sebanding dengan penurunan glukosa dan insulin (Morash et al., 2004). Ekspresi resistin pada adiposit meingkat pada hiperinsulinemia dan hiperglikemia sehingga dapat disimpulkan bahwa ekspresi resistin antara lain dipengaruhi oleh insulin dan glukosa darah (Rajala et al., 2004).

Adipsin (Complement Factor D)

Adipsin merupakan protein yang diekspresikan secara spesifik oleh adiposit selain pada paru dan n. ischiadicus dan pada beberapa hewan juga ditemukan pada jaringan lain seperti traktus digestivus dan limpa. Adipisin diekspresikan secara terus menerus namun konsentrasinya pada serum menurun pada keadaan obesitas (Flier et al., 1987). Adipsin diperkirakan menjadi regulator metabolisme lipid pada adiposit.

Complement Factor C3a-desArg (Acylation-Stimulating Protein/ ASP)

Adiposit memproduksi protein komplemen B, C3 dan adipsin. Ketika protein komplemen B dan C3 membentuk kompleks protein, maka akan dipotong oleh adipsin membentuk komplemen C3a yang kemudian mengalami dearginasi menjadi acylation-stimulating protein (ASP). ASP memiliki berat molekul 9 kD , dan seperti insulin, ASP dapat memicu esterifikasi asam lemak. Sekresi C3 distimulasi oleh chylomicrons (Maslowska et al., 1997). Chylomicrons mentranspor triacylglycerol dari usus ke jaringan perifer. Efek chylomicrons kemungkinan disebabkan karena chylomicron juga mentranspor vitamin A yang berikatan dengan transthyretin yang memfasilitasi masuknya vitamin A ke adiposit (Scantlebury et al., 2001). Oksidasi vitamin A pada adiposit menghasilkan asam retinoat yang akan berikatan dengan ligan retinoic acid receptor (RAR) dan retinoid X receptor (RXR). Tergantung pada konsentrasinya asam retinoat dapat menginduksi transkripsi berbagai gen pada adiposit. Kadar ASP yang rendah akan memicu diferensiasi adiposit sedangkan kadar tinggi menghambat diferensiasi adiposit
(Scantlebury et al., 2001). Konsumsi lemak yang banyak pada manusia juga meningkatkan produksi ASP sementara puasa akan menurunkan konsentrasi ASP plasma (Cianflone et al., 1989). Peningkatan sirkulasi asam lemak bebas pada keadaan puasa akan diikuti penurunan ASP plasma. ASP menimbulkan esterifikasi asam lemak pada adiposit. Uptake dan pelepasan asam lemak dipengaruhi oleh esterifikasi dan lipolisis. ASP meningkatkan efisiensi sintesis triacylglycerol pada adiposit yang akan meningkatkan clearancelemak postpandrial. Defisiensi ASP mengurangi lemak tubuh, menimbulkan resistensi terhadap obesitas dan meningkatkan sensitivitas terhadap insulin.

Visfatin

Visfatin diproduksi oleh adiposit pada visceral. Kadarnya pada plasma meningkat pada obesitas. Visfatin memiliki efek yang menyerupai insulin seperti menurunkan kadar gula darah. Visfatin kemudian diketahui berikatan dan mengaktifkan reseptor insulin (Fukuhara et. al., 2005)

Tumor Necrosis Factor-?? (TNF-?) dan Interleukin-6 (IL-6)

Adiposit memproduksi sitokin proinflamatorik seperti tumor necrosis factor-?? (TNF-?) dan interleukin-6 secara terus menerus. Konsentrasi mediator inflamasi tersebut pada plasma meningkat pada keadaan resistensi insulin dan obesitas. Peneitian selanjutnya membuktikan bahwa obesitas adalah ekadaan inflamasi kronik yang ditandai dengan adanya peningkatan C-reactive protein (CRP), IL-6 dan PAI-1 (Dandona et al., 2004). Netralisasi TNF-??pemberian reseptor solubel TNF-? pada plasma meningkatkan sensitivitas insulin pada hewan coba (Hotamisligil et al., 1993) namun masih belum memperlihatkan hasil yang memuaskan pada manusia (Ofei et.al., 1996).

Kesimpulan

Jaringan lemak memiliki fungsi yang cukup penting dalam regulasi homeostasis energi. Adiposit memproduksi banyak hormon yang memiliki efek yang beragam pada asupan energi, pengeluaran energi, metabolisme lemak dan karbohidrat dsb. Leptin berperan dalam
regulasi nafsu makan dan pengeluaran energi. Adiponectin, visfatin merupakan adipokin yang berperan dalam meningkatkan sensitivitas insulin sedangkan TNF-?, IL6 dan resistin menurunkan resistensi insulin. Adanya efek adipokin pada homeostasis energi ini memberi kemunggkinan aplikasinya pada terapi obesitas dan penyakit yang terkait dengan obesitas.

Kepustakaan

Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 7(8):947-53.
Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. 2005. Resistin, an adipokine with potent proinflammatory properties. JImmunol. 1;174(9):5789-95.
Chehab FF, Lim ME, Lu R. 1996. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 12(3):318-20.
Cianflone K, Vu H, Walsh M, Baldo A, Sniderman A. 1989. Metabolic response of Acylation Stimulating Protein to an oral fat load. J Lipid Res. 30(11):1727-33.
Cinti S. 2001, The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc, 60(3):319-28.
Cinti S. 2002. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest. 25(10):823-35.
Dandona, P., Aljada A., Badyopadhyay A. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immun. 25(1):4-7
Dietze-Schroeder D, Sell H, Uhlig M, Koenen M, Eckel J. 2005. Autocrine Action of Adiponectin on Human Fat Cells Prevents the Release of Insulin Resistance-Inducing Factors. Diabetes. 54(7):20032011.

Flier JS, Cook KS, Usher P, Spiegelman BM. 1987. Severely impaired adipsin expression in genetic and acquired obesity. Science. 237(4813):405-8.
Fukuhara A, Matsuda M, Nishizawa M, Seqawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe

E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. 2005. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 307(5708):426-30. Hotamisligil, GS et al., 1993. Adipose expression of tumor necrosis factor alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91
Heilbronn L , Smith SR, Ravussin E. 2004. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab-Disord. 28 Suppl 4:S12-21.
Jequier E. Leptin signaling, adiposit, and energy balance. 2002. Ann N Y Acad Sci. 967:379-88.
Kim S, Moustaid-Moussa N. 2000. Secretory, endocrine and autocrine/ paracrine function of the adipocyte. JNutr. 130(12):3110S-3115S. Liu Z, Uesaka T, Watanabe H, Kato N. 2001..High fat diet enhances colonic cell proliferation and carcinogenesis in rats by elevating serum leptin. Int J Oncol. 2001 Nov;19(5):1009-14
MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. 2002. Trends Endocrinol Metab. 13(1):5-11.

Malik KF, Young WS 3rd. 1996. Localization of binding sites in the central nervous system for leptin (OB protein) in normal, obese (ob/ ob), and diabetic ($\mathrm{db} / \mathrm{db}$) C57BL/6J mice.Endocrinology. 137(4):1497-500.
Maslowska M, Sniderman AD, Germinario R, Cianflone K 1997. ASP stimulates glucose transport in cultured human adipocytes. Int J Obes Relat Metab Disord. 21(4):261-6.
Morash BA, Ur E, Wiesner G, Roy J, Wilkinson M. 2004. Pituitary resistin gene expression: effects of age, gender and obesity. Neuroendocrinology. 79(3):149-56.
Ofei, F. et al., 1996. Effects of an engineered human anti-TNF alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM,. Diabetes 45:881-885

Pico C, Oliver P, Sanchez J, Palou A. 2003. Gastric leptin: a putative role in the short-term regulation of food intake. Br J Nutr: 90(4):735-41.
Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 269(5223):540-3.
Rajjala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, Sinha MK, Gingerich RL, Scherer PE, Ahima RS. 2004. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes. 53(7):1671-9.
Ravussin E , Smith SR. 2002. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 967:363-78.
Rayner DV, Trayhurn P. 2001. Regulation of leptin production: sympathetic nervous system interactions. J Mol Med. 79(1):820.

Sahu A. 2003. Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol.24(4):225-53.
Scantlebury T, Sniderman AD, Cianflone K. 2001. Regulation by retinoic acid of acylation-stimulating protein and complement C3 in human adipocytes. Biochem J. 356(Pt 2):445-52.
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 270(45):26746-9
Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. 2001. The hormone resistin links obesity to diabetes Nature. 409(6818):307-12.
Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. 2005. Activation of SOCS-3 by resistin. Mol Cell Biol. 25(4):1569-75. Tartaglia LA. 1997. The leptin receptor. J Biol Chem. 272(10):6093-6 Tiraby C, Langin D. 2003. Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol Metab. 14(10):439-41.

Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF. 2002. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J Biol Chem. 277(33):29359-62
Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P, Kimura S, Nagai R, Kadowaki T. 2003. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 278(41):40352-63.

